Validation of the Commissioning of an OSLD System for Remote Dosimetry

F. Aguirre, P. Alvarez, C. Amador, A. Tailor, D. Followill, G. Ibbott

Making Cancer History®

TL vs. OSL Processes

- OSL and TL processes are similar
- Dielectric crystals with trace amounts of impurities
- LiF:Mg for Harshaw TLD100 and Al₂O₃:C for Landauer InLight nanoDot[™]
- TLD uses heat, OSLD uses light

Equipment

TLD

OSLD

Verification of Reference Calibration

- Photon and electron beams
- Same blocks and irradiation methodology

TLD vs OSLD

- LiF:Mg,Ti (TLD-100)
- Disposable
- One reading
- Temperature and weight control
- 3 dosimeters per point
- 6 min reading time

- $(Al_2O_3:C)$
- Reusable (dose limit ~ 10Gy)
- Re-readable
- No temp/weight ctrl, light tightness
- 2 dosimeters per point,
- ~ 2 min reading time

Results for TLD verifications

OSLD Studies at the RPC

- General characteristics of OSLD for radiotherapy doses
- Reliability and cost comparison OSLD/TLD
- Acceptance and commissioning of the OSLD system (dosimeters and reader)
- Design of irradiation, reading, calculation and quality assurance procedures for OSLD dosimetry
- Validation of the system
- Develop computerized calculation and archive procedures

Methodology

Sensitivity (S) = Dose/unit signal Dose = S x signal

Dose calculation

Dose to dosimeter

$$Dose_{D} = S \cdot signal \cdot ECF \cdot DCF \cdot K_{L} \cdot K_{F} \cdot K_{E}$$

- ECF = Nanodot element correction factor
- DCF = Depletion correction factor
- KL = Linearity correction
- **KL** = Linearity correction
- KE = Energy/block correction

Dose calculation

Dose to institution point

$Dose_{I} = Dose_{D} \cdot ISQ \cdot TMR \cdot BSF \cdot MC$

- ISQ = Inverse square correction
- TMR = Tissue Maximum ratio
- BSF = Backscatter factor
- MC = Medium correction

Element correction factor (ECF)

Correction for the difference in single dosimeter response compared to the average response of the whole population

- Defined for groups of 100 dosimeters
- Range between 0.90 to 1.10
- Determined at dose level of 25 cGy
- Verified for different dose levels
- Verified to reproduce after annealing of the dosimeters for cumulative doses of up to 1000 cGy (Average ECF vs. first time ECF within 0.6%)
- Verified for the whole population of 4000.

Depletion correction

Correction for changes in signal based on the number of readings performed

Batch dependence under analysis

Reader dependent

Linearity correction

Correction for difference from the linearity response at different dose levels

Batch dependent

Fading Correction

A correction for the loss of signal based on the number of days between irradiation and reading date

Energy/block correction

Correction for changes in signal because of type and energy beam

Energy (photons)	K _E	Energy (electrons)	K _E
Cobalt 60	1.000	5e	1.027
4MV	1.000	6e	1.044
6 MV	1.011	7e	1.035
10 MV	1.051	8e	1.042
15 MV	1.045	9e	1.033
18 MV	1.054	10e	1.038
23 MV	1.058	12e	1.029
		14e	1.024
		15e	1.025
Defined for the		16e	1.027
RPC system	ו	18e	1.047
Batch dependent		20e	1.032
		21e	1.035

Validation of the system

Institutional comparison OSLD/TLD

- 11 institutions
- 2 photon beams and 5 electron beams per institution

PER ENERGY 0.989 - 1.015

PER INSTITUTION 0.993 - 1.011

PER ENERGY				
6e	1.004			
8e	0.989			
9e	1.002	PER		
12e	0.996		INSTITUTION	
15e	0.999		1	1.004
16e	1.004		2	1.011
18e	1.016		3	0.994
20e	1.007		4	0.998
21e	1.015		5	0.999
4x	1.024		6	1.001
6x	0.996		7	1.011
10x	1.006		8	1.002
15x	1.000		9	0.993
18x	0.993		10	1.001
23x	0.993		11	0.999
AVG	1.003		AVG	1.001

Results for OSLD verifications

July 1 – 15, 2010

Quality of the Results

Agreement between measured dose and Institution stated dose 1.5%

 Uncertainty in dose measurement under controlled cobalt 60 irradiation conditions 0.6%

Conclusions

- TLD and OSLD are comparable tools for remote dosimetry
- OSLD allows the RPC to increase efficiency without losing accuracy
- The RPC is ready and has migrated to OSLD as of June 1st 2010

OSLD Studies at the RPC

READER Stability Reading cycle

DOSIMETER

Depletion rate Dependence of depletion rate with reader Cumulative dose limit Number of readings per dosimeter Relative dose response or element correction factor (ECF) Variability of ECF with reader Variability of ECF with dose Dose linearity correction Signal fading correction Energy/block correction

ANNEALING

Optimal annealing time and recommended instrumentation. Variability of ECF with annealing